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ABSTRACT 
Stability characteristics of two-level, time-integration algorithms are investigated, with particular reference 
to explicit schemes. Conditions for stability are expressed on the basis of algebraic estimates of the 
eigenvalues associated with the amplification matrices of the algorithm. The use of automatic symbolic 
manipulators allows an extension of these estimates to higher order and multidimensional elements. 
Eigenvectors are also evaluated algebraically and the resulting fundamental mode shapes are related to 
the onset of instabilities. 
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INTRODUCTION 

In the finite element solution of transient problems of the conduction-type, the so-called partial 
discretization technique is the most common approach. According to this procedure, the 
governing equations are first discretized in the space dimensions using, for example, the Galerkin 
method. Afterwards, the resulting sets of ordinary differential equations are integrated in time 
by means of suitable time-stepping schemes1,2. 

The schemes for time-integration must be accurate and simple but, to produce meaningful 
results, they must also be stable, at least conditionally. Implicit schemes, usually, are accurate 
and unconditionally stable but can be somewhat complex in programming and are generally 
very demanding with computer time. For this reason explicit schemes are often considered a 
viable alternative that avoids most difficulties, even if at the expense of conditional stability1-4. 

In this paper we investigate the stability characteristics of time-integration algorithms, with 
particular reference to explicit schemes. The main objective of this research is finding algebraic 
estimates of the maximum allowable time steps that can be used with explicit procedures of time 
integration. Only two-level schemes are considered since, in practical applications, they are 
usually preferred to multilevel schemes. In fact two-level schemes lead to single-step recurrence 
relations that have a very general applicability, allow easy adaptive variations of the time step 
and are always self-starting1,2. 

Conditions for stability are expressed on the basis of algebraic estimates of the eigenvalues 
associated with systems of space-discretized differential equations. The procedure is not a new 
one and, indeed, some classic results obtained by following this line of investigation are reported 
in most textbooks on the finite element method. However, published results concern almost 
invariably simple, one-dimensional elements, while it appears that little of a precise nature has 
been done for higher order and for two- and three-dimensional elements5. In this research 
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instead, the use of automatic symbolic manipulators has allowed us to extend considerably the 
range of algebraic estimates and, consequently, the applicability of matrix methods to the stability 
analysis of time-integration algorithms6,7. 

Once the eigenvalues have been found, a further point of great interest is the computation of 
the eigenvectors. The eigenvectors are associated to the fundamental mode shapes in which the 
solution vector responds to the forcing load. The numerical errors excite these modes and the 
resulting oscillations have a shape that is a combination of the fundamental modes8,9. 

STABILITY CHARACTERISTICS OF TWO-LEVEL TIME-INTEGRATION 
SCHEMES 

The space discretization of many heat transfer and fluid flow problems of the conduction-type 
leads to sets of ordinary differential equations of the form: 

C + KΦ = f (1) 

where t is the time, Φ is the unknown vector, C is the capacity matrix, K is the conductance 
matrix and f is the heat load vector1,2. 

Clearly, the stability characteristics of time-integration algorithms depend on the behaviour 
of the transient and, consequently, we are interested in the homogeneous form of (1)5. Thus, to 
perform a stability analysis, we can set f = 0 and write the recurrence formula for time integration 
of(1)as: 

Φn+1 = AΦn (2) 
where 

(3) 

is the amplification matrix, ∆t is the time step and θ is a weighting factor. 
The stability requirements of any time integration scheme are dependent on the eigenvalues 

of the amplification matrix A, defined by the characteristic equation: 
AΦi = μiΦi (4) 

where μi is the eigenvalue and Φi is the corresponding eigenvector1,2. 
In stable schemes we must have: 

|μi| 1 (5) 
for any eigenvalue μi of the matrix A, since numerical errors must not be amplified from one 
step to the next. Condition (5) is always satisfied by implicit algorithms with θ > 1/2 and, 
therefore, such algorithms are unconditionally stable. Instead, schemes with a weighting factor 
θ < 1/2 satisfy (5) only for time steps that are smaller than a critical value and, therefore, such 
schemes are only conditionally stable. The critical value decreases with θ and the explicit 
algorithm, having θ = 0, presents the smallest critical value of the time step. On the other hand, 
for θ = 0, the time integration procedure becomes particularly simple and, if the matrix C is 
replaced by its lumped equivalent CL, the solution is advanced in time without even the necessity 
of equation solving. Obviously, with explicit schemes, it is always convenient to use time steps 
that are as large as possible but remain within the limits for stability. 

With two-level explicit schemes, putting θ = 0 in (3), and substituting A in (4) we obtain: 

∆rC - 1 Φi = μiΦi (6) 
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Multiplying both sides of (6) by C and rearranging we have the generalized eigenproblem: 

–KΦi = CΦi (7) 

in which the matrices K and C are positive definite and, consequently, the eigenvalues 

λi = μi – 1 (8) 
are real numbers greater or equal to zero1,10. 

Taking into account (8), we can express the stability condition (5) as: 

|λi + 1| 1 (9) 
which yields: 

–2 λi 0 (10) 
The inequality λi 0 at the right hand side is always satisfied while, to investigate the inequality 
λi – 2, it is sufficient to solve the characteristic equation 

det = 0 (11) 

with the global matrices replaced by the element matrices. In fact, it can be shown that the 
highest modulus of the global eigenvalues of (7) is always less than the highest modulus of the 
local element eigenvalues1,2,9. 

By referring to the characteristic equation (11), written for the element matrices, we obtain 
a number r of eigenvalues equal to the number of nodes in the element. Then, by considering 
the eigenvalues λi we can solve the eigenproblem (7) for i = 1, r to obtain the r eigenvectors Φi

10. 

STABILITY CHARACTERISTICS OF FINITE ELEMENTS 

In this research, the eigenvalues have been evaluated algebraically for several elements that are 
commonly employed in finite element analyses6,7. Because of the current limitations of the 
algebraic manipulators, only the regular element shapes, represented in Figures 1 and 2, have 
been considered. The usual definitions have been assumed for the entries in the conductance 
matrix K: 

Kij=– Nt·(k Nj)dΩ = k Ni· N jdΩ (12) 

and for the entries in the consistent capacity matrix C: 

C i j = NiρcNjdΩ=pc N iN jdΩ (13) 

In the above equations, Ni and Nj are the shape functions, defined in terms of local coordinates, 
k is the thermal conductivity, ρc is the volumetric heat capacity and the domains Ω are defined 
in Figures 1 and 2. For linear elements we have considered also the lumped diagonal matrices 
CL obtained from the consistent capacity matrices C by the row-summing technique: 

(Cij)L = δij Cik (14) 

where δij is the Kronecker delta: δii = 1 and δij = 0 for i ≠ j . For parabolic elements instead, 
lumped capacity matrices have not been computed, since for higher order elements there is no 
single agreed-upon method to diagonalise capacity matrices11. 
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Matrices K, C and CL have been computed from equations (12) to (14). The results of these 
algebraic manipulations have been published elsewhere7 while, in Appendix A, we have listed the 
eigenvalues obtained automatically from the characteristic equation (11). In Appendix A, the 
eigenvalues are ordered according to their magnitude, at least whenever this criterion is 
applicable, and reference is always made to the diffusivity a = k/ρc and to the dimensions defined 
in Figures 1 and 2. 
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If we consider, for each element, the modulus of the largest eigenvalue, we can express the 
condition for stability, in dimensionless form, as: 

(15) 

where λM is the eigenvalue with the largest modulus, Fo is the Fourier number of the space-time 
discretization and the critical value Focrit is the maximum allowable dimensionless time step. 
The reference lengths ∆L and the values of Focrit are reported in Table I for all the elements 
analysed in Appendix A. 

As we can see from Table 7, the stability analysis yields several results of practical interest. 
Consistent capacity matrices lead to more severe conditions for stability than lumped capacity 
matrices and the limitations on the time step increase also from one-dimensional to 
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Table 1 Characteristic dimensions ∆L and maximum allowable dimensionless time steps Fo for the one- (1D), two- (2D) 
and three- (3D) dimensional elements represented in Figures 1 and 2 referred to consistent (C) and lumped (L) capacity 
matrices 

Element 

1D—linear—C 
1D—linear—L 
1D—parabolic—C 

2D—linear—C 

2D—linear—L 

2D—parabolic—C 

3D—linear—C 

3D—linear—L 
equilateral triangle—C 
equilateral triangle—L 

right triangle—C 

right triangle—L 

equilateral tetrahedron—C 
equilateral tetrahedron—L 
rect tetrahedron—C 
rect tetrahedron—L 

∆L 

∆x 
∆x 
∆x 

- 1 / 2 

min(∆x, ∆y) 

min -1/2 , 

- 1 / 2 

min(∆x, ∆y, ∆z) 
∆L 
∆L 

∆L 
∆L 
∆L 
∆L 

Focrit 

1/6 
1/2 
2/15 

1/6 

1/2 

2/3 

1/6 

1/2 
1/12 
1/3 

1/6 

2/3 

1/20 
1/4 
1/40 
1/8 

multidimensional elements. In general, simpler or lower order elements perform better than 
higher order elements, at least as far as stability is concerned. However, rectangular elements 
show higher stability limits than right triangular elements having the same dimensions ∆x and 
∆y. Similarly eight node, three-dimensional elements show higher stability limits than right 
tetrahedral elements having the same dimensions ∆x, ∆y and ∆z. 

The regularities in the eigenvalues are a further point of interest. All the elements have the 
first eigenvalue equal to zero. Besides, when isoparametric elements are compared, we can see 
that the eigenvalues of one-dimensional elements are a subset of the eigenvalues of 
two-dimensional elements, the eigenvalues of two-dimensional elements are a subset of the 
eigenvalues of three-dimensional elements and the eigenvalues of linear elements are a subset of 
the eigenvalues of parabolic elements. 

Finally, it is worth noting that, whenever a non-uniform discretization is employed, the stability 
limit (15) is related to the smallest element in the mesh. However, with a non-uniform mesh, 
(15) might not hold good for small elements but might still be satisfied by large elements. In 
such cases oscillations arise in the small elements, where numerical errors are amplified, but 
these oscillations are filtered by the large elements, where numerical errors are reduced. 
Consequently, in a problem with a non-uniform mesh discretization, the stability condition (15) 
can be rather conservative, as demonstrated in Figure 3. 
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FUNDAMENTAL MODE SHAPES OF FINITE ELEMENTS 

As we have already pointed out, the fundamental mode shapes in which the solution responds 
to the forcing load are related to the eigenvectors. The numerical errors excite these modes and 
the resulting numerical oscillations have a shape that is a combination of the fundamental modes. 
In particular, the largest eigenvalue is associated with the dominating eigenvector and the 
oscillations leading to numerical instabilities are likely to start with the shape corresponding to 
this dominating eigenvector. 

In this research, the eigenvectors have been evaluated by solving automatically the 
eigenproblem (7) and the results obtained, for the elements represented in Figures 1 and 2, are 
reported in Appendix B. Obviously, the regularities in the eigenvalues are reflected into 
corresponding regularities of the eigenvectors. For example, we have always λ1 = 0 and thus 
all the eigenproblems (7) have a corresponding first solution Ωl that is a constant eigenvector. 
Besides, from Appendix B and Figures 4 and 5, we can see that the eigenvectors of 
three-dimensional isoparametric elements include the eigenvectors of two- and one-dimensional 
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isoparametric elements, while the eigenvectors of parabolic and two-dimensional isoparametric 
elements include, respectively, the eigenvectors of linear and one-dimensional isoparametric 
elements. 

The graphical representations show clearly which eigenvector yields the dominating mode. 
The numerical experiments confirm that the dominating mode is the critical one for the onset 
of instabilities and, by looking at Figures 3 and 4, we can see that the shapes of the numerical 
oscillations correspond to the dominating eigenvectors. In fact, the dominating eigenvector is 
related to mode 2, i.e. to a '2∆x' wave pattern, for linear elements and to mode 3, i.e. to a 
parabolic wave pattern, for parabolic elements. 

CONCLUSIONS 

We have employed automatic symbolic manipulators to evaluate algebraically eigenvalues and 
eigenvectors of the generalized problem (7) with reference to several elements that are commonly 
used in finite element discretizations. This way, the range of applicability of matrix methods to 
stability analyses of time-integration algorithms has been greatly extended. 
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Because of the current limitations of the algebraic manipulators, only linear, time-independent 
problems and regular shapes of the elements have been considered. However, in the next future, 
the arrival of more powerful manipulators might remove these limitations and even open the 
way to analyses in which the global, instead of the element, amplification matrices might be 
considered. 
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APPENDIX A 

To save space, only the final expressions of eigenvalues are reported here, while the algebraic 
computations have been published elsewhere7. With reference to the elements represented in 
Figures 1 and 2, by going through the steps outlined in the text, we have obtained the following 
sets of eigenvalues: 

— for one-dimensional, two-node linear elements, with consistent capacity matrices: 

[λl, λ2] = (A1) 

— for one-dimensional, two-node linear elements, with lumped capacity matrices: 

[λl, λ2] = (A2) 

— for one-dimensional, three-node parabolic elements, with consistent capacity matrices: 

[ λ 1 , . . . , λ 3 ] = (A3) 

— for two-dimensional, four-node linear elements, with consistent capacity matrices: 

[λ1,...,λ4] = (A4) 

— for two-dimensional, four-node linear elements, with lumped capacity matrices: 

[λ1,...,λ4] = (A5) 
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— for two-dimensional, eight-node parabolic elements, with consistent capacity matrices: 

[ λ 1 , . . . , λ 8 ] = 

(A6) 

— for three-dimensional, eight-node linear elements, with consistent capacity matrices: 

[λ1,...,λ8] = 

(A7) 

— for three-dimensional, eight-node linear elements, with lumped capacity matrices: 

[λ1,...,λ8] = 

(A8) 

— for three-node, equilateral triangular elements, with consistent capacity matrices: 

[λ1,...,λ3] = (A9) 

— for three-node, equilateral triangular elements, with lumped capacity matrices: 

[λ1,...,λ3] = (A10) 

— for three-node, right triangular elements, with consistent capacity matrices: 

[λ1,...,λ3] = 

(A11) 

— for three-node, right triangular elements, with lumped capacity matrices: 

[λ1,...,λ3] = 

(A12) 

— for four-node, equilateral tetrahedral elements, with consistent capacity matrices: 

[λ1,...,λ4] = (A13) 
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— for four-node, equilateral tetrahedral elements, with lumped capacity matrices: 

[λ1,...,λ4] = (A14) 

— for four-node, right tetrahedral elements, with equal sides and consistent capacity matrices: 

[λ1,...,λ4] = (A15) 

— for four-node, right isosceles tetrahedral elements, with lumped capacity matrices: 

[λ1,...,λ4] = (A16) 

APPENDIX B 

By going through the steps outlined in the text, we have computed the eigenvectors for most 
of the elements represented in Figure 1. To deal with integer numbers, the entries in the 
eigenvectors have been scaled, but no attempt has been made to arrive at sets of orthonormal 
vectors. From the numerical results it appears that no distinction can be made between consistent 
and lumped capacity matrices7 and, consequently, the results obtained can be listed as follows: 

— for one-dimensional, two node linear elements: 

Φ1 = [1, 1]T 

(B1) 
Φ2 = [–1, 1]T 

— for one-dimensional, three-node parabolic elements: 
Φ1 = [1, 1, 1]T 

Φ2 = [–1, 0, 1]T (B2) 
Φ3 = [–2 , l, –2]T 

— for two-dimensional, four-node linear elements: 
Φ1 = [1, 1, 1, 1]T 

Φ2 =[–1, 1, 1, –1]T 

Φ3 = [–1, –1, 1, 1]T (B3) 
Φ4 = [–1, 1, –1, 1]T 

— for two-dimensional, eight-node parabolic elements: 

Φ1 = [1, 1, 1, 1, 1, 1, 1, 1]T 

Φ2 = [–1, 0, 1, 1, 1, 0, –1, –1]T 

Φ3 = [ – 1 , –1, –1, 0, 1, 1, 1, 0]T 

Φ4 = [ – 1 , 0, 1, 0, – 1, 0, 1, 0]T 

(B4) 
Φs = [ – 2 , 1, –2, –2, –2, 1, –2, –2]T 

Φ6 = [ – 2 , 1, –2, 0, 2, –1, 2, 0]T 

Φ7 = [ – 2 , 0, 2, –1, 2, 0, –2, 1]T 

Φ8 = [ – 2 , 1, –2, 0, 2, –1, 2, 0]T 
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— for three-dimensional, eight-node linear elements: 

Φ1 = [1, 1, 1, 1, 1, 1, 1, 1]T 

Φ2 = [1, –1, –1, 1, 1, –1, –1 ,1]T 

Φ3 = [1, 1, –1, –1, 1, 1, –1, –1]T 

Φ4 = [1, 1, 1, 1, –1, –1, –1, –1]T (B5) 
Φ5 = [1, –1, 1, –1, 1, –1, 1, –1]T 

Φ6 = [1, –1, –1, 1, –1, 1, 1, –1]T 

Φ7 = [1, 1, –1, –1, –1, –1, 1, 1]T 

Φ8= [1, –1, 1, –1, –1, 1, –1, 1]T 

— for three-node, equilateral triangular elements: 

Φ1 = [1 , 1, 1]T 

Φ2 = [ – l , 0, 1]T (B6) 
Φ3 = [–1, 1, 0]T 

— for three-node, right triangular elements: 

(B7) 

— for four-node, equilateral tetrahedral elements: 

Φ1 = [1, 1, 1, 1]T 

Φ2 = [–1, 0, 0, 1]T (B8) 

Φ3 = [ – 1 , 0, 1, 0]T 

Φ4 = [–1, 1,0, 0]T 

— for four-node, right tetrahedral elements, with equal sides: 

Φ1 = [1, 1, 1, 1]T 

Φ2 = [0, –1, 0, 1]T (B9) 

Φ3 = [0, –1, 1, 0 ] T 

Φ4 = [ – 3 , 1, 1, 1]T 


